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Abstract

A method for the calculation of the second-order anisotropy parameters of single molecular magnets from the single particle

orbitals is reviewed. We combine this method with density functional calculations to predict the magnetic anisotropy parameters of

several single molecule magnets: Mn12-acetate, Mn10, Co4, Fe4, Cr1 and V15. Comparison with available experimental data shows

that it is possible to predict these values quite accurately from density functional wavefunctions.
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1. Introduction

Single-molecule magnets are being extensively studied

because of their interesting properties such as quantum

tunneling of magnetization [1,2] and quantum phase

interference [3] on one hand and on the other hand to

exploit these properties to build new data storage

systems with significantly higher storage densities or in

applications to quantum computing [4]. Below their

blocking temperature, those molecules show magnetiza-

tion hysteresis similar to bulk magnets. Unlike the bulk

magnetization hysteresis, the hysteresis of the molecular

magnets shows a step-like structure, which arises from

the magnetization tunneling. These properties are gov-

erned by the magnetic anisotropy barrier of the system.

This barrier has its origin in spin�/orbit coupling [5]. In

this article, we outline a method for the calculation of

the anisotropy barrier by incorporating the spin�/orbit

coupling into a non-relativistic density-functional calcu-

lation and relying on second-order perturbation theory.

We show that this treatment of spin�/orbit coupling

term is in effect exact to second-order and results in
accurate prediction of the magnetic barriers.

At the time of the VIIth International Conference on

Molecule-based Magnets in 2000 Miller suggested the

question: ‘How does one design materials with con-

trolled zero-field splitting (D )?’ was one of the ‘unsolved

mysteries’ in the field of molecule-based magnets [6].

This work is an attempt to fill this gap and to under-

stand the magnetic anisotropy parameters D and E

from first-principles density-functional calculations.

From the knowledge gained by these investigations we

hope to derive information on how to control and

modify these magnetic anisotropy parameters.

2. Theoretical details

Up to second-order, the anistropy Hamiltonian can in

general be expressed as:

H�DS2
z �E(S2

x�S2
y) (1)

where D and E are known as axial and transverse
anisotropy parameters. Recently, Pederson and Khanna

have developed a method for accounting for second-

order anisotropy energies [7]. This method relies on a
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simple albeit exact method for spin�/orbit coupling and

a second-order perturbative treatment of the spin

Hamiltonian to determine the dependence of the total

energy on spin projection. In this method, a Cartesian
representation of the spin�/orbit term is used which is

exact and is also more convenient for multi-center

systems. According to this method, the spin�/orbit

coupling term:

U(r; p; S)��
1

2c2
S � p�9F(r) (2)

can be incorporated as given below. Using single-

particle wavefunctions expressed in terms of a basis set:

cis(r)�
X

j;s

Cis
jsfj(r)xs (3)

where the fj(r) are the spatial functions and x are spin

functions, the matrix elements can be expressed as:

Uj;s;k;s?��fjxs½U(r; p; S)½fkxs?� (4)

��i�fj ½Vx½fk��xs½Sx½xs?� (5)

where the operator Vx is defined as:

�fj ½Vx½fk��
1

2c2

��
dfj

dz jFj dfk

dy

�
�

�
dfj

dy jFj dfk

dz

��
(6)

In the above, F(r) is the Coulomb potential. Thus this

treatment uses matrix elements of the Coulomb poten-

tial with partial derivatives of the basis functions,

thereby avoiding the time consuming task of calculating
the gradient of the Coulomb potential directly.

The implementation of the spin�/orbit coupling has

been tested on calculations of the energy level splittings

of several free noble gas atoms because in that case one

can compare with non spin polarized solutions of the

Dirac equation [8]. Some results are shown in Table 1.

Please note that the agreement improves significantly for

the outer electronic shells, for which in general relati-
vistic effects become less important. This is very

important because a completely filled shell gives no

contribution to the magnetic anisotropy energy. Only

the states close to the Fermi level are important for the

determination of the tunneling barriers.

More important for the field of molecular magnetism

is a direct comparison of the energy level splittings of

transition metal ions to experimental data which in-

cludes the effect of spin�/orbit splittings as well as the
exchange splitting. We discuss two examples of Mn and

Ru atoms in solids, where the electronic structure was

probed directly by resonant X-ray scattering measure-

ment. X-ray emission and absorption spectroscopies are

powerful probes of the electronic structure of solids.

Since dipole selection rules govern the transitions to or

from a core level, it is actually the angular-momentum-

resolved electronic density of states (DOS) that is
measured. In the soft X-ray regime, one of the states is

a localized, dispersionless core level. This allows for the

interpretion of the measured spectra in terms of

unoccupied states for absorption and occupied states

for emission.

The first example compares directly the electronic

structure of the molecule-based magnet Mn[N(CN)2]2
obtained from experiment and theory [9]. The Mn2�

ions are antiferromagnetically coupled at low tempera-

tures and the local moments of the Mn atoms are

reduced by about 10% as compared with an isolated ion

due to partial covalent bonding. The splitting of the 2p-

levels of Mn can be measured by the L -emission X-ray

spectra of Mn. The experimental value of 11�/12 eV is in

good agreement with the calculated splitting of 10.3 eV.

Also all other results obtained from Naval Research
Laboratory Molecular Orbital Library (NRLMOL) are

in good agreement with previous experiments [9].

Also for the case of a Ru atom in an octahedral

oxygen environment which simulates SrRuO3, a mate-

rial of interest due to superconductivity, it was found

that the calculated splittings of the core 2p levels are in

excellent agreement with results of X-ray measurements

within 1�/3% of the total splitting [10].
From the good agreement to the numerical and

experimental test cases we conclude that the implemen-

tation of the spin�/orbit operator as described above

works very reliably and is correct.

2.1. Magnetic anisotropy energy

In the absence of a magnetic field, the second-
order perturbative change to the total energy
of a system with arbitrary symmetry can be
expressed as:

D2 �
X
ss?

X
ij

Mss?
ij Sss?

i Ss?s
j (7)

which is the generalization of Eq. (19) of Ref. [7]. In the

above expression, s sums over the spin degrees of
freedom and i , j sums over all the coordinate labels, x ,

y , z , respectively. The matrix elements Si
ss ?�/

�xs jSi jxs ?� implicitly depend on the axis of quantiza-

Table 1

Spin�/orbit splittings of energy levels (DSO in Hartree) for Ar and Kr

calculated with NRLMOL compared with results of a full relativistic

numerical solution of the Dirac equation [8]

DSO Ar Kr

NRLMOL Dirac NRLMOL Dirac

2p 0.0796 0.0817 1.8731 1.9635

3p 0.0063 0.0066 0.2775 0.2897

3d �/ �/ 0.0471 0.0479
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tion. The matrix elements Mij
ss ? are given by:

Mss?
ij ��

X
kl

�fls½Vi½fks?��fks?½Vj ½fls�

ols � oks?

(8)

where fls and fks ? are occupied and unoccupied states,
respectively and o ’s are the energy of the corresponding

states.

A few relevant points about this method are that for

electronic structure calculations which employ an ana-

lytical basis set such as Gaussians, it is easier to take the

derivative of the basis functions rather than that of the

Coulomb potential. The treatment uses the Cartesian

formulation as given above which is exact and, there-
fore, accounts for all contributions from the nuclear and

electronic potential which is a major part of the spin�/

other orbit effects. Further, although the spin�/orbit

coupling is not incorporated into the self-consistent

cycle, the results are still quite accurate due to the fact

that the first order perturbation to density due to the

operator �/iV �/ S vanishes. This follows from the fact

that the first order corrections to orbitals are purely
imaginary.

Our calculations include all single-determinantal two-

electron interactions which have a classical origin due to

the interaction of a moving spin 1/2 electron in a field of

charge due to protons and electrons. It does not include

any effects, which are related to multi-determinantal

overlap. These effects may be small in the case that the

metal-ion overlap is small as is the case for most single
molecule magnets.

2.2. DFT implementation: NRLMOL

We combine the above treatment of the second-order

zero-field spin Hamiltonian with the density functional

based electronic structure calculations where the single-
particle orbitals fi are the Kohn�/Sham orbitals [11,12].

The non-relativistic density functional-based calcula-

tions are performed with the all-electron Gaussian-

orbital based NRLMOL program [13�/18], using the

Perdew�/Burke�/Ernzerhof (PBE) generalized-gradient

approximation for the exchange and correlation func-

tion [19]. NRLMOL combines large Gaussian orbital

basis sets, numerically precise variational integration
and an analytic solution of Poisson’s equation in order

to accurately determine the self-consistent potentials,

secular matrix, total energies and Hellmann�/Feynman�/

Pulay forces [20]. The exponents for the single Gaus-

sians are fully optimized for DFT calculations [17]. The

contraction coefficients for atomic orbitals are obtained

by performing an SCF-LDA calculation on the spherical

unpolarized atom where the total energy of the atom is
converged to within 10 meV. The basis functions which

do not correspond to atomic wavefunction are con-

structed from the longest range bare Gaussians in the

basis set. All computationally intensive parts of the code

are massively parallized which allows for the first-

principle treatment of systems with 100�/200 atoms

within density-functional theory [18,21,22].
We present a few case studies using the above

mentioned method. We would like to point out that it

is necessary to get the correct spin-ordering of the

system from the electronic structure calculation. An-

other pertinent point is the HOMO�/LUMO gap of the

system. From the Eq. 8, it is clear that the barrier will

increase for systems with small gaps. Although, it

appears that a large spin and a small gap will help in
enhancing the barrier of the system, we find that it is a

subtle interplay between several other effects that

determines the barrier.

3. Application to single molecule magnets

In Table 1 we present the calculated D and E

parameters for a few single molecule magnets and

compare with the available experimental values. We

show the actual molecular symbols in the table and refer

to these molecules in the text by their transition metal
core since it is these atoms which are responsible for

their magnetic behavior. In all the cases presented here

the spin ordering is in agreement with experiment. In all

cases except Fe4, the geometries were optimized until the

forces on the atoms became negligible. The geometry

optimizations were carried out at the all-electron level

and to reduce computational costs, the symmetry of the

molecule was exploited whenever possible.
The calculated D and E parameters for Mn12, Mn10,

the ferric star Fe4 and Cr-amide molecular magnets are

in excellent agreement with experimental values. The

single molecule magnets are in general characterized by

a high spin ground-state. However, as can be seen from

Table 2, a high spin state does not necessarily correlate

with a high anisotropy barrier.

Some detailed discussion of our results will be given
below.

3.1. Mn12-acetate

The Mn12 molecule has S4 symmetry and, therefore,

the calculations were carried out using only 25 inequi-

valent atoms. Moreover, in Mn12, the acetate units were

replaced by formate groups (OOCH) so as to reduce the

computational efforts while keeping the core of the

molecule the same. This molecule has ferrimagnetic spin

ordering with an inner core of Mn4O4 of minority spin

atoms and an outer ring of Mn8O8 majority spin atoms.
The inner-core Mn atoms have spin magnetic moment

of �/3 mB whereas the outer ones have 4 mB thus leading

to a net magnetic moment of 20 mB.
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The HOMO and the LUMO belong to the majority

spin channel and the gap is quite small 0.45 eV [7]. The

density of states near the Fermi level is dominated by the

Mn 3d states and also has some contribution from

oxygen 2p states. Although the states near the Fermi

level belong to the majority spin channel, it is actually
the majority occupied and minority unoccupied states

which contribute nearly 65% of the anisotropy barrier.

3.2. Mn10 cluster

The [Mn10O4(2,2?-biphenoxide)4Br12]4� functional

unit is compensated by [CH3CH2)3NH]2[Mn-

(CH3CN)4(H2O)2]. Experimental results suggest that

the magnetic anisotropy is due to the localized valence

electrons of the ten Mn atoms and our calculations on

the [CH3CH2)3NH]2[Mn(CH3CN)4(H2O)2] confirm that
this unit behaves as a charge compensating paramag-

netic spectator. High-field EPR measurements have

determined that the molecule in its ground state has

spin S�/12. However, our calculations have shown that

this spin state would not be magnetically stable since

there would be no common Fermi level in the majority

and minority channels. As a result we obtained a S�/13

spin state. This is consistent with experiment since it is
difficult to differentiate between the two possibilities

experimentally [31].

The majority gap in Mn10 is also much smaller than

the minority one [24]. In Mn10, all matrix elements from

the occupied majority electrons prefer an easy-axis

system whereas the matrix elements from the occupied

minority spin channel would result in an easy-plane

system. There is a competition between these possibi-
lities and due to the larger contribution from the

occupied majority spin channel the system ends up as

an easy-axis system. Therefore, in spite of the fact that

Mn10 possesses a high-spin state, the anisotropy barrier

in this system is small. The calculated barrier height of

9.5 K compares reasonably well with the experimental

value of 7.7 K [25]. We found that the removal of

subsets of the Br ions will change the magnetic
anisotropy drastically by changing the electronic struc-

ture. However, neutralizing the electric field due to Br

ions by an external potential in the calculations changed

the anisotropy barrier by less than 1 K. Therefore, we

conclude that the electric fields created by the Br ions do

not have a significant effect on the magnetic properties

of the molecule in contrast to chemical interactions.

3.3. Fe4-star

While the molecular structure of the other examples is

well known or has been discussed in detail in an earlier

publication it seems to be worthwhile to give the

structure for this case to demonstrate the magnetic

ordering. In the Ferric star or the Fe4 cluster shown in

Fig. 1, all iron atoms are Fe3�-ions, the inner Fe is

coupled antiferromagnetically to the outer Fe atoms,

resulting in a ferrimagnetic spin-ordering with total S�/

5. The calculated values in Table 2 for the Fe4 are

preliminary, and therefore, we postpone a detailed

discussion of that system to a forthcoming publication.

Table 2

Comparison of the calculated and experimental magnetic anisotropy parameters for the single molecule magnets discussed in the text

Molecule S D (K) E (K) Type References

Theory Experimental Theory Experimental Theory Experimental

Mn12O12(O2CH)16(H2O)4 10 �/0.56 �/0.56 0 0 uniaxial [7,22] [23]

[Mn10O4(2,2?-biphenoxide)4Br12]4� 13 �/0.06 �/0.05 0 0 uniaxial [24] [25]

Co4(CH2C5H4N)4(CH3OH)4Cl4 6 �/0.64 �/5.6 0 0 uniaxial [26] [27]

Fe4(OCH2)6(C4H9ON)6 5 �/0.56 �/0.57 0.06 0.05 triaxial [28] [29]

Cr[N(Si(CH3)3)2]3 3/2 �/2.49 �/2.66 0 0 uniaxial [30]

Fig. 1. The molecular structure of the Fe4-star. The four Fe atoms are

shown by large spheres.
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3.4. Co4 cluster

Co4 displays ferromagnetic ordering. In the case of

Co4, the experimental determination of the D parameter
is not conclusive. Our calculations showed that in this

system the anisotropy barrier has a large pressure

gradient [26]. During the optimization cycle, the dis-

tance between the hydroxymethyl pyridine ligands were

found to increase, which in turn led to an increase of the

HOMO�/LUMO gap and consequent reduction of the

anisotropy barrier. The barrier during the optimization

was found to vary between 60 and 23 K. In the
crystalline environment, the ligands are likely to be

pressed towards each other and that may lead to a high

value of barrier. Since, the calculations are performed

on isolated systems where such effects are absent, the

barrier is also lower than the experimentally determined

value. On the other hand our calculations showed that

when the geometry of the molecule is changed from the

lowest-energy staggered geometry to a higher energy
eclipsed geometry, the system has triaxial anisotropy

and the anisotropy barrier increases to 95 K. Another

high-energy isomer which lies between the staggered and

the eclipsed structure, has an easy-plane anisotropy with

a barrier of 50 K. Therefore, any experiment which can

change the orientation of the ligands, can achieve higher

barrier.

3.5. Cr-amide

The Cr-amide Cr[N(Si(CH3)3)2]3 contains only a

single magnetic center (Cr3�) located in the middle of

the molecule threefold coordinated by nitrogen atoms

(see Fig. 2). The charge state is confirmed by calculating

the spin density within a sphere around the Cr atom. A

sphere with radius of 1.2 Å contains already 2.7 majority

electron, clearly confirming the Cr3� charge state. The

electronic density of states obtained from Gaussian

broadened molecular levels is presented in Fig. 3. The

HOMO comes from Cr majority 3d states at around �/5
eV. The Cr1 molecule has large majority and minority

gaps on the order of 2 to 2.5 eV, respectively. The

anisotropy barrier in this molecule is small (Table 2)

which can be attributed to the large HOMO�/LUMO

gap. In this case, the spin density is well localized on the

Cr atom. The HOMO and LUMO states are definitely

Cr(3d) and there is some covalent bonding between the

Cr states and the ligands. The magnetic behavior is
completely determined by the Cr states. This is an

interesting case. Since the spin is small (3/2) there is only

one magnetic field at which resonant tunneling of

magnetization would be achieved. However, no such

experimental measurements have been reported so far.

The calculated magnetic anisotropy barrier of 5.6 K

agrees well with the experimental value of 6 K obtained

from electron spin resonance measurements [30].

3.6. V15 spin system

Finally we mention that the anisotropy energy in the
V15 spin system has also been approximately determined

using the same method discussed above. In contrast to

the other molecules mentioned herein the V15 has an

anisotropy energy that nearly vanishes and the interest-

ing physics in this system is due to a large number of

nearly degenerate spin configurations which are energe-

tically differentiated by exchange interactions and only

weakly affected by anisotropies. While direct measure-
ments of the anisotropy energy in this system are

presently unavailable, we point out that the observed

field-induced crossing between the (3/2, 1/2) states and

Fig. 2. The molecular structure of the Cr-amide. The Cr atom in the

center is shown by the large sphere. Hydrogens are not displayed for

clarity.

Fig. 3. The electronic density of states of the Cr-amide. The HOMO is

derived from Cr majority 3d spin states at �/5 eV. The molecular levels

have been broadened by a Gaussian.
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(1/2, 1/2) state is reasonably in accord with the small

anisotropy calculated in this system. See Ref. [32] for

details.

4. Summary

It is observed that although a small value of the

energy differences between the occupied and unoccupied

states would result in a high value of the anisotropy

barrier, it is also necessary for the states to have

substantial overlap. Also, it is extremely important to

obtain the correct charge states for the calculation of the

barrier [33,34]. An incorrect charge transfer can drasti-

cally affect the accuracy of the results.

In conclusion, we reviewed a method for the calcula-

tion of the magnetic anisotropy barrier from single

particle wavefunctions. The spin�/orbit operator was

expanded in an exact Cartesian formulation and we

show that it leads to accurate predictions of the

anisotropy barrier in a number of cases. We also discuss

the importance of using the correct geometry, spin-

ordering and charge states in the calculation.

In order to explore the range of systems where the

presented method gives reliable results, further studies

on more systems are needed. Also the study of

experimentally well characterized classes of compounds

where only the ligands are changed in a controlled way

but not the magnetic core would show if our calcula-

tional approach can reproduce the observed changes in

the magnetic behavior. Our current results make us very

confident in the predictive power of the presented

method. This should allow for a microscopic under-

standing based on the electronic structure of single

molecule magnets of the magnetic anisotropy para-

meters which is crucial for a design of molecular

nanomagnets. In particular the results suggest that there

is sufficient accuracy for the computationally aided

design of technologies based on these systems.
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